**The Elements of the Theory of Algebraic Numbers**

by Legh Wilber Reid

**Publisher**: The Macmillan company 1910**ISBN/ASIN**: 1236324447**Number of pages**: 488

**Description**:

It has been my endeavor in this book to lead by easy stages a reader, entirely unacquainted with the subject, to an appreciation of some of the fundamental conceptions in the general theory of algebraic numbers. With this object in view, I have treated the theory of rational integers more in the manner of the general theory than is usual, and have emphasized those properties of these integers which find their analogues in the general theory.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Fields and Galois Theory**

by

**J. S. Milne**

A concise treatment of Galois theory and the theory of fields, including transcendence degrees and infinite Galois extensions. Contents: Basic definitions and results; Splitting fields; The fundamental theorem of Galois theory; etc.

(

**6903**views)

**Geometry of the Quintic**

by

**Jerry Shurman**-

**Wiley-Interscience**

The text demonstrates the use of general concepts by applying theorems from various areas in the context of one problem -- solving the quintic. This book helps students to develop connections between the algebra, geometry, and analysis ...

(

**5024**views)

**Galois Theory**

by

**Miles Reid**-

**University of Warwick**

The author discusses the problem of solutions of polynomial equations both in explicit terms and in terms of abstract algebraic structures. The course demonstrates the tools of abstract algebra as applied to a meaningful problem.

(

**10447**views)

**Class Field Theory**

by

**J. S. Milne**

Class field theory describes the abelian extensions of a local or global field in terms of the arithmetic of the field itself. These notes contain an exposition of abelian class field theory using the algebraic/cohomological approach.

(

**6412**views)