**Lectures on Numerical Methods for Non-Linear Variational Problems**

by R. Glowinski

**Publisher**: Tata Institute of Fundamental Research 1980**ISBN/ASIN**: 3540775064**Number of pages**: 265

**Description**:

Many physics problems have variational formulations making them appropriate for numerical treatment by finite element techniques and efficient iterative methods. This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Numerical Methods with Applications**

by

**Autar K Kaw, Egwu Eric Kalu**-

**Lulu.com**

The textbook is written for engineering undergraduates taking a course in numerical methods. It offers a treatise to numerical methods based on a holistic approach and short chapters. The authors included examples of real-life applications.

(

**11134**views)

**Introduction to the Numerical Integration of PDEs**

by

**B. Piette**-

**University of Durham**

In these notes, we describe the design of a small C++ program which solves numerically the sine-Gordon equation. The program is build progressively to make it multipurpose and easy to modify to solve any system of partial differential equations.

(

**7818**views)

**Handbook of Mathematical Functions**

by

**M. Abramowitz, I. A. Stegun**-

**GPO**

Students and professionals in the fields of mathematics, physics, engineering, and economics will find this reference work invaluable. A classic resource for special functions, standard trig, and exponential logarithmic definitions and extensions.

(

**25338**views)

**Solving PDEs in Python**

by

**Hans Petter Langtangen, Anders Logg**-

**Springer**

This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, it guides readers through the essential steps to quickly solving a PDE in FEniCS.

(

**1079**views)