Logo

Lectures on Geodesics in Riemannian Geometry

Small book cover: Lectures on Geodesics in Riemannian Geometry

Lectures on Geodesics in Riemannian Geometry
by

Publisher: Tata Institute of Fundamental Research
Number of pages: 317

Description:
The main topic of these notes is geodesics. Our aim is 1) to give a fairly complete treatment of the foundations of Riemannian geometry through the tangent bundle and the geodesic flow on it and 2) to give global results for Riemannian manifolds which are subject to geometric conditions of various types; these conditions involve essentially geodesics.

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Riemannian Submanifolds: A SurveyRiemannian Submanifolds: A Survey
by - arXiv
Submanifold theory is a very active vast research field which plays an important role in the development of modern differential geometry. In this book, the author provides a broad review of Riemannian submanifolds in differential geometry.
(2990 views)
Book cover: A Panoramic View of Riemannian GeometryA Panoramic View of Riemannian Geometry
by - Springer
In this monumental work, Marcel Berger manages to survey large parts of present day Riemannian geometry. The book offers a great opportunity to get a first impression of some part of Riemannian geometry, together with hints for further reading.
(6868 views)
Book cover: Lectures notes on compact Riemann surfacesLectures notes on compact Riemann surfaces
by - arXiv.org
An introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.
(616 views)
Book cover: Riemannian GeometryRiemannian Geometry
by - arXiv
These notes on Riemannian geometry use the bases bundle and frame bundle, as in Geometry of Manifolds, to express the geometric structures. It starts with the definition of Riemannian and semi-Riemannian structures on manifolds.
(3605 views)