**Lecture Notes on Seiberg-Witten Invariants**

by John Douglas Moore

**Publisher**: Springer 2010**ISBN/ASIN**: 3540412212**ISBN-13**: 9783540412212**Number of pages**: 130

**Description**:

This book gives a streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure, and that others have no smooth structure at all. This topic provides an excellent example of how global analysis techniques, which have been developed to study nonlinear partial differential equations, can be applied to the solution of interesting geometrical problems.

Download or read it online for free here:

**Download link**

(550KB, PDF)

## Similar books

**Floer Homology, Gauge Theory, and Low Dimensional Topology**

by

**David Ellwood, at al.**-

**American Mathematical Society**

Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.

(

**7836**views)

**Exact Sequences in the Algebraic Theory of Surgery**

by

**Andrew Ranicki**-

**Princeton University Press**

One of the principal aims of surgery theory is to classify the homotopy types of manifolds using tools from algebra and topology. The algebraic approach is emphasized in this book, and it gives the reader a good overview of the subject.

(

**5379**views)

**Manifolds**

by

**Neil Lambert**-

**King's College London**

From the table of contents: Manifolds (Elementary Topology and Definitions); The Tangent Space; Maps Between Manifolds; Vector Fields; Tensors; Differential Forms; Connections, Curvature and Metrics; Riemannian Manifolds.

(

**5140**views)

**Noncommutative Localization in Algebra and Topology**

by

**Andrew Ranicki**-

**Cambridge University Press**

Noncommutative localization is a technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. The applications to topology are via the noncommutative localizations of the fundamental group rings.

(

**4740**views)