**Introductory Finite Difference Methods for PDEs**

by D. M. Causon, C. G. Mingham

**Publisher**: BookBoon 2010**ISBN-13**: 9788776816421**Number of pages**: 144

**Description**:

This book presents finite difference methods for solving partial differential equations (PDEs) and also general concepts like stability, boundary conditions etc. The book is intended for undergraduates who know Calculus and introductory programming.

Download or read it online for free here:

**Download link**

(4.2MB, PDF)

## Similar books

**Introduction to Partial Differential Equations**

by

**John Douglas Moore**-

**UCSB**

The author develops the most basic ideas from the theory of partial differential equations, and apply them to the simplest models arising from physics. He presents some of the mathematics that can be used to describe the vibrating circular membrane.

(

**8464**views)

**Partial Differential Equations with Maple**

by

**Robert Piche, Keijo Ruohonen**-

**Tampere University of Technology**

The course presents the basic theory and solution techniques for the partial differential equation problems most commonly encountered in science. The student is assumed to know something about linear algebra and ordinary differential equations.

(

**4750**views)

**Finite Difference Computing with PDEs**

by

**Hans Petter Langtangen, Svein Linge**-

**Springer**

This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners.

(

**1091**views)

**An Introduction to Microlocal Analysis**

by

**Richard B. Melrose, Gunther Uhlmann**-

**MIT**

The origin of scattering theory is the study of quantum mechanical systems. The scattering theory for perturbations of the flat Laplacian is discussed with the approach via the solution of the Cauchy problem for the corresponding perturbed equation.

(

**5660**views)