Logo

Lecture Notes on Motivic Cohomology

Large book cover: Lecture Notes on Motivic Cohomology

Lecture Notes on Motivic Cohomology
by

Publisher: AMS
ISBN/ASIN: 0821838474
ISBN-13: 9780821838471
Number of pages: 228

Description:
This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups.

Home page url

Download or read it online for free here:
Download link
(1.6MB, PDF)

Similar books

Book cover: An Elementary Illustrated Introduction to Simplicial SetsAn Elementary Illustrated Introduction to Simplicial Sets
by - arXiv.org
This is an introduction to simplicial sets and simplicial homotopy theory with a focus on the combinatorial aspects of the theory and their geometric/topological origins. Accessible to students familiar with the fundamentals of algebraic topology.
(3549 views)
Book cover: The Adams-Novikov Spectral Sequence and the Homotopy Groups of SpheresThe Adams-Novikov Spectral Sequence and the Homotopy Groups of Spheres
by - Northwestern University
Contents: The Adams spectral sequence; Classical calculations; The Adams-Novikov Spectral Sequence; Complex oriented homology theories; The height filtration; The chromatic decomposition; Change of rings; The Morava stabilizer group.
(7475 views)
Book cover: Introduction to Algebraic Topology and Algebraic GeometryIntroduction to Algebraic Topology and Algebraic Geometry
by
Introduction to algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for algebraically integrable systems and the geometry of quantum field and string theory.
(6053 views)
Book cover: Algebraic TopologyAlgebraic Topology
by - Cambridge University Press
Introductory text suitable for use in a course or for self-study, it covers fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The geometric aspects of the subject are emphasized.
(29065 views)