Logo

Lecture Notes on Differentiable Manifolds

Small book cover: Lecture Notes on Differentiable Manifolds

Lecture Notes on Differentiable Manifolds
by

Publisher: National University of Singapore
Number of pages: 78

Description:
Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; Tangent Bundles and Vector Fields; Riemann Metric and Cotangent Bundles; Tensor Bundles, Tensor Fields and Differential Forms; Orientation and Integration; The Exterior Derivative and the Stokes Theorem.

Home page url

Download or read it online for free here:
Download link
(500KB, PDF)

Similar books

Book cover: Differential Topology and Morse TheoryDifferential Topology and Morse Theory
by - University of Sheffield
These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.
(6109 views)
Book cover: Introduction to Symplectic and Hamiltonian GeometryIntroduction to Symplectic and Hamiltonian Geometry
by
The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.
(9373 views)
Book cover: Manifolds of Differentiable MappingsManifolds of Differentiable Mappings
by - Birkhauser
This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.
(5864 views)
Book cover: Tight and Taut SubmanifoldsTight and Taut Submanifolds
by - Cambridge University Press
Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.
(6613 views)