**Introduction to Homological Geometry**

by Martin A. Guest

**Publisher**: arXiv 2001

**Description**:

This is an introduction to some of the analytic (or integrable systems) aspects of quantum cohomology which have attracted much attention during the last few years. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described in the original naive manner, without going into the technicalities of a rigorous definition.

Download or read it online for free here:

**Download link 1**

**Download link 2**

(multiple PDF files)

## Similar books

**Tight and Taut Submanifolds**

by

**Thomas E. Cecil, Shiing-shen Chern**-

**Cambridge University Press**

Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.

(

**6615**views)

**Lectures on Calabi-Yau and Special Lagrangian Geometry**

by

**Dominic Joyce**-

**arXiv**

An introduction to Calabi-Yau manifolds and special Lagrangian submanifolds from the differential geometric point of view, followed by recent results on singularities of special Lagrangian submanifolds, and their application to the SYZ Conjecture.

(

**7633**views)

**Lectures on Minimal Surface Theory**

by

**Brian White**-

**arXiv**

The goal was to give beginning graduate students an introduction to some of the most important basic facts and ideas in minimal surface theory. Prerequisites: the reader should know basic complex analysis and elementary differential geometry.

(

**3687**views)

**An introductory course in differential geometry and the Atiyah-Singer index theorem**

by

**Paul Loya**-

**Binghamton University**

This is a lecture-based class on the Atiyah-Singer index theorem, proved in the 60's by Sir Michael Atiyah and Isadore Singer. Their work on this theorem lead to a joint Abel prize in 2004. Requirements: Knowledge of topology and manifolds.

(

**6696**views)