Complex Manifolds and Hermitian Differential Geometry

Small book cover: Complex Manifolds and Hermitian Differential Geometry

Complex Manifolds and Hermitian Differential Geometry

Publisher: University of Toronto
Number of pages: 113

The intent of this text is not to give a thorough treatment of the algebraic and differential geometry of complex manifolds, but to introduce the reader to material of current interest as quickly as possible. The author provides a number of interesting and non-trivial examples, both in the text and in the exercises.

Download or read it online for free here:
Download link
(850KB, PDF)

Similar books

Book cover: Lectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing TheoremsLectures On Levi Convexity Of Complex Manifolds And Cohomology Vanishing Theorems
by - Tata Institute Of Fundamental Research
These are notes of lectures which the author gave in the winter 1965. Topics covered: Vanishing theorems for hermitian manifolds; W-ellipticity on Riemannian manifolds; Local expressions for and the main inequality; Vanishing Theorems.
Book cover: Dynamics in One Complex VariableDynamics in One Complex Variable
by - Princeton University Press
This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the case of rational maps of the Riemann sphere. The book introduces some key ideas in the field, and forms a basis for further study.
Book cover: Complex Analytic and Differential GeometryComplex Analytic and Differential Geometry
by - Universite de Grenoble
Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.
Book cover: Lectures on Complex Analytic ManifoldsLectures on Complex Analytic Manifolds
by - Tata Institute of Fundamental Research
Topics covered: Differentiable Manifolds; C maps, diffeomorphisms. Effect of a map; The Tensor Bundles; Existence and uniqueness of the exterior differentiation; Manifolds with boundary; Integration on chains; Some examples of currents; etc.