**E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra**

by J. P. May

**Publisher**: Springer 1977**ISBN/ASIN**: 3540081364**ISBN-13**: 9783540081364**Number of pages**: 280

**Description**:

The theme of this book is infinite loop space theory and its multiplicative elaboration. This is the appropriate framework for the most structured development of algebraic K-theory, by which we understand the homotopy theory of discrete categories, and one of the main goals of this volume is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

Download or read it online for free here:

**Download link**

(8.9MB, PDF)

## Similar books

**H Ring Spectra and Their Applications**

by

**R. R. Bruner, J. P. May, J. E. McClure, M. Steinberger**-

**Springer**

This volume concerns spectra with enriched multiplicative structure. It is a truism that interesting cohomology theories are represented by ring spectra, the product on the spectrum giving rise to the cup products in the theory.

(

**5189**views)

**Notes on the course Algebraic Topology**

by

**Boris Botvinnik**-

**University of Oregon**

Contents: Important examples of topological spaces; Constructions; Homotopy and homotopy equivalence; CW-complexes and homotopy; Fundamental group; Covering spaces; Higher homotopy groups; Fiber bundles; Suspension Theorem and Whitehead product; etc.

(

**5233**views)

**Algebraic and Geometric Surgery**

by

**Andrew Ranicki**-

**Oxford University Press**

Surgery theory is the standard method for the classification of high-dimensional manifolds, where high means 5 or more. This book aims to be an entry point to surgery theory for a reader who already has some background in topology.

(

**5093**views)

**Modern Algebraic Topology**

by

**D. G. Bourgin**-

**Macmillan**

Contents: Preliminary algebraic background; Chain relationships; The absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; etc.

(

**2544**views)