Logo

Special Functions, a Review

Small book cover: Special Functions, a Review

Special Functions, a Review
by

Publisher: viXra
Number of pages: 69

Description:
The present document is concerned with the review of the most frequently special functions applied in scientific fields such as Bessel functions, Mathieu functions, the Gamma function, the Beta function, Jacobi functions... We review their principal properties and their interactions with different branches especially in mathematics.

Home page url

Download or read it online for free here:
Download link
(760KB, PDF)

Similar books

Book cover: Jacobi Operators and Complete Integrable Nonlinear LatticesJacobi Operators and Complete Integrable Nonlinear Lattices
by - American Mathematical Society
Introduction and a reference to spectral and inverse spectral theory of Jacobi operators and applications of these theories to the Toda and Kac-van Moerbeke hierarchy. It covers second order difference equations, self-adjoint operators, etc.
(8204 views)
Book cover: Reader-friendly Introduction to the Measure TheoryReader-friendly Introduction to the Measure Theory
by - Yetanotherquant.de
This is a very clear and user-friendly introduction to the Lebesgue measure theory. After reading these notes, you will be able to read any book on Real Analysis and will easily understand Lebesgue integral and other advanced topics.
(6940 views)
Book cover: Special Functions and Their Symmetries: Postgraduate Course in Applied AnalysisSpecial Functions and Their Symmetries: Postgraduate Course in Applied Analysis
by - University of Leeds
This text presents fundamentals of special functions theory and its applications in partial differential equations of mathematical physics. The course covers topics in harmonic, classical and functional analysis, and combinatorics.
(10010 views)
Book cover: An Introduction to Asymptotic AnalysisAn Introduction to Asymptotic Analysis
by - Heriot-Watt University
From the table of contents: Order notation; Perturbation methods; Asymptotic series; Laplace integrals (Laplace's method, Watson's lemma); Method of stationary phase; Method of steepest descents; Bibliography; Notes; Exam formula sheet; etc.
(2245 views)