**An Introduction to Hilbert Module Approach to Multivariable Operator Theory**

by Jaydeb Sarkar

**Publisher**: arXiv 2013**Number of pages**: 52

**Description**:

This article gives an introduction of Hilbert modules over function algebras and surveys some recent developments. Here the theory of Hilbert modules is presented as combination of commutative algebra, complex geometry and the geometry of Hilbert spaces and its applications to the theory of n-tuples of commuting operators.

Download or read it online for free here:

**Download link**

(480KB, PDF)

## Similar books

**C*-algebraic Methods in Spectral Theory**

by

**Serge Richard**-

**Nagoya University**

From the table of contents: Linear operators on a Hilbert space; C*-algebras; Crossed product C*-algebras; Schroedinger operators and essential spectrum; Twisted crossed product C*-algebras; Pseudodifferential calculus; Magnetic systems.

(

**5057**views)

**Functional Analysis**

by

**Alexander C. R. Belton**-

**Lancaster University**

These lecture notes are an expanded version of a set written for a course given to final-year undergraduates at the University of Oxford. A thorough understanding of Banach and Hilbert spaces is a prerequisite for this material.

(

**7112**views)

**Functors and Categories of Banach Spaces**

by

**Peter W. Michor**-

**Springer**

The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.

(

**5744**views)

**Fredholm Operators and Spectral Flow**

by

**Nils Waterstraat**-

**arXiv**

Fredholm operators are one of the most important classes of linear operators in mathematics. The aim of these notes is an essentially self-contained introduction to the spectral flow for paths of (generally unbounded) selfadjoint Fredholm operators.

(

**2397**views)